Refine Your Search

Topic

Author

Search Results

Journal Article

Combustion and Emissions with Bio-alcohol and Nonesterified Vegetable Oil Blend Fuels in a Small Diesel Engine

2012-10-23
2012-32-0017
Combustion and exhaust gas emissions of alcohol and vegetable oil blends including a 20% ethanol + 40% 1-butanol + 40% vegetable oil blend and a 50% 1-butanol + 50% vegetable oil blend were examined in a single cylinder, four-stroke cycle, 0.83L direct injection diesel engine, with a supercharger and a common rail fuel injection system. A 50% diesel oil + 50% vegetable oil blend and regular unblended diesel fuel were used as reference fuels. The boost pressure was kept constant at 160 kPa (absolute pressure), and the cooled low pressure loop EGR was realized by mixing with a part of the exhaust gas. Pilot injection is effective to suppress rapid combustion due to the lower ignitability of the alcohol and vegetable oil blends. The effects of reductions in the intake oxygen concentration with cooled EGR and changes in the fuel injection pressure were investigated for the blended fuels.
Technical Paper

Combustion in a Two-stage Injection PCCI Engine With Lower Distillation-temperature Fuels

2004-06-08
2004-01-1914
The combustion characteristics in a partially premixed charge compression ignition (PCCI) engine with n-hexane were compared with ordinary diesel fuel to evaluate combustion improvements with lower distillation-temperature fuels. In the PCCI engine, a lean mixture was formed reasonably with early stage injection and the additional fuel was supplied with a second stage fuel injection after ignition. With n-hexane, thermal efficiency improved while simultaneously maintaining low NOx and smokeless combustion. A CFD analysis simulated the mixture formation processes and showed that the uniformity of the mixture with the first stage injection improves with lower distillation-temperature fuels.
Technical Paper

Cycle-to-Cycle Transient Characteristics of Exhaust Gas Emissions from a Diesel Engine with Different Increasing and Decreasing Load Patterns

1997-02-24
970750
Cycle-to-cycle changes in diesel exhaust gas emissions were investigated under two transient operation patterns: One, “an interval step decreasing and increasing load”, where the fuel amount is rapidly decreased from high to low loads, and after an interval, Δtint the fuel amount is abruptly returned to the initial level. The other is “a ramp increasing load”, where the fuel amount is increased gradually. Except just after the step increase in fuel amounts, the THC emissions were almost completely determined by the piston wall temperature and fuel amount. However, the THC concentrations immediately after the step increase in fuel amounts were much higher than the value of the corresponding steady state operation with the same piston wall temperature. This overshoot concentration, ΔTHC, was almost constant at different intervals, Δtint and it can be suppressed by ramp increased loading.
Technical Paper

Cycle-to-cycle Transient Characteristics of Diesel Emissions during Starting

1999-10-25
1999-01-3495
Changes in exhaust gas emissions during starting in a DI diesel engine were investigated. The THC after starting increased until around the 50th cycle when the fuel deposited on the combustion chamber showed the maximum, and THC then decreased to reach a steady value after about 1000 cycles when the piston wall temperature became constant. The NOx showed an initial higher peak just after starting, and increased to a steady value after about 1000 cycles. Exhaust odor had a strong correlation with THC, and at the early stage odor was stronger than would be expected from the THC concentration. The THC increased with increased fuel injection amounts, decreased cranking speeds, and fuels with higher viscosity, higher 90% distillation temperature, and lower ignitability.
Technical Paper

Dependence of Ultra-High EGR Low Temperature Diesel Combustion on Fuel Properties

2006-10-16
2006-01-3387
The dependence of ultra-high EGR low temperature diesel combustion on fuel properties including cetane number and distillation temperature was investigated with a single-cylinder, naturally aspirated, 1.0 L, common rail DI diesel engine. Decreasing cetane number in fuels significantly reduces smoke emission due to an extension in ignition delay and the subsequent improvement in mixture formation. Smokeless combustion, ultra-low NOx, and efficient operating range with regard to EGR and IMEP are significantly extended by decreasing fuel cetane number. Changes in fuel distillation temperature do not result in significant differences in smoke emission and thermal efficiency for ultra-high EGR operation, and smokeless operation is established even with higher distillation temperature fuels as long as fuel cetane number is sufficiently low.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Technical Paper

Description of Diesel Emissions by Individual Fuel Properties

1992-10-01
922221
The effects of several fuel property variables on the emissions from a D.I. diesel engine were individually analyzed. The results showed that the smoke and dry soot increased with increased kinematic viscosity, shorter ignition lag, and higher aromatic content, especially at high equivalence ratios. Over the whole range of equivalence ratios, SOF depended on and increased with only ignition lag. The NOx improved slightly with increased kinematic viscosity, higher ignitability, and decreased aromatic content. The unburnt HC also improved with decreased kinematic viscosity and higher ignitability. The distribution shape of distillation curves had little influence on the emissions.
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

2015-09-01
2015-01-2021
To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Technical Paper

Distinguishing the Effects of Aromatic Content and Ignitability of Fuels in Diesel Combustion and Emissions

1991-10-01
912355
The influence of aromatic content in fuels on the soot and NOx emissions from a diesel engine was analyzed under controlled ignition lags with spark-assisted operation. Monocyclic aromatic hydrocarbons and n-hexane mixtures were used as fuels, and the aromatic content was varied from 0 to 75 v-%. The experiments showed that, at the same equivalence ratio and regardless of the molecular structure of the fuel, the soot concentration in the exhaust gas could be described by a linear-combination function with two variables representing the ignition lag and C/H atom-ratio of the fuels. For unchanged ignition lags, the soot emissions increased linearly with increased C/H atom-ratios, which are controlled by the aromatic content. The degree of increase in soot emissions with increasing C/H atom-ratio decreased with decreasing equivalence ratios. The NOx emission increased slightly with increases in the C/H atom-ratio and ignition lag.
Journal Article

Effect of Exhaust Catalysts on Regulated and Unregulated Emissions from Low Temperature Diesel Combustion with High Rates of Cooled EGR

2008-04-14
2008-01-0647
Unregulated emissions from a DI diesel engine with ultra-high EGR low temperature combustion were analyzed using Fourier transform infrared (FTIR) spectroscopy and the reduction characteristics of both regulated and unregulated emissions by two exhaust catalysts were investigated. With ultra-high EGR suppressing the in-cylinder soot and Nox formation as well as with the exhaust catalysts removing the engine-out THC and CO emissions, clean diesel operation in terms of ultra-low regulated emissions (Nox, PM, THC, and CO) is established in an operating range up to 50% load. To realize smokeless low temperature combustion at higher loads, EGR has to be increased to a rate with the overall (average) excess air ratio less than the stoichiometric ratio.
Technical Paper

Effect of Urea Thermal Decomposition on Diesel NOx-SCR Aftertreatment Systems

2008-06-23
2008-01-1544
Urea Selective Catalytic Reduction (SCR) has been proven to significantly reduce NOx emissions from diesel engines. The thermal decomposition of urea, which forms the ammonia as the reactant, has a crucial effect on the performance and durability of the NOx-SCR system. The incomplete thermal decomposition of urea not only reduces the NOx conversion ratio and increases the ammonia slip, but also leads to deposit formation on the catalyst surface, which will block the pore and the active sites of the catalyst and then decreases the durability of the SCR systems. In this paper, the urea thermolysis was measured using the Thermal Gravimetric Analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Then, the performance of the SCR systems under different injection parameters of the Urea-water solution was investigated on a diesel engine test bench. Finally, the deposits on the catalyst were also analyzed using TGA and FTIR.
Technical Paper

Effects of Different Biodiesels and their Blends with Oxygenated Additives on Emissions from a Diesel Engine

2008-06-23
2008-01-1812
Biodiesel is an alternative, renewable, clean fuel, which can effectively reduce emissions from diesel engines. However, the effects of biodiesel on engine emissions vary due to the difference in source. In this paper, performance of five different biodiesels was studied: CME, SME, RME, PME and WME. Engine power, fuel consumption, gaseous emissions and PM, DS and none soot fraction (NSF) were investigated in a Cummins ISBe6 Euro III diesel engine fueled with five biodiesels respectively and compared with the diesel fuel. Results revealed that using different biodiesels resulted in PM reductions ranging from 53% to 69%, which included DS reduction ranging from 79% to 83%. Observations showed that fuel oxygen content and viscosity had obvious effects on DS. Higher oxygen content biodiesels produced less DS at high load while lower viscosity biodiesels produced less DS at low load.
Technical Paper

Effects of EGR and Pilot Injection on Characteristics of Combustion and Emissions of Diesel Engines with Low Ignitability Fuel

2012-04-16
2012-01-0853
Characteristics of diesel combustion with low cetane number fuels with similar distillation temperatures to ordinary diesel fuel, including fuels with cetane number 32 and 39 (LC32, LC39), and a blend of n-cetane (n-hexadecane) and iso-cetane (2, 2, 4, 4, 6, 8, 8-heptamethylnonane) with cetane number 32 (CN32), were investigated. The effects of cooled exhaust gas recirculation (EGR) and pilot injection on characteristics of combustion and exhaust gas emissions with these fuels were examined in a naturally aspirated, single cylinder, diesel engine equipped with a common-rail fuel injection system. Even with the low cetane number fuels, quiet combustion with low levels of exhaust gas emissions comparable to ordinary diesel fuel was established by suitable control of intake oxygen levels and pilot injections.
Technical Paper

Effects of Fuel Quality on a Euro IV Diesel Engine with SCR After-Treatment

2008-04-14
2008-01-0638
Beijing will implement the 4th stage emission regulations (equivalent to Euro IV) in 2008 ahead of other provinces or cites in China. Beijing Environmental Protection Bureau (EPB) organized petroleum corporations, automobile and engine manufactories as well as research institutes to test the adaptability of the fuels from Chinese refineries to the modern vehicles or engines on the road running conditions in China. In this paper, the effects of diesel fuel quality on combustion and emission of a Euro IV heavy-duty diesel engine as one part of the program were studied to provide technical data to stipulate the feasible diesel fuel standard, which should guarantee modern vehicles or engines to meet the 4th stage regulations. Eight kinds of diesel fuels with different properties, such as cetane number, distillation temperature (T90) and sulfur content, were tested on a Euro IV Cummins heavy-duty diesel engine with urea SCR after-treatment.
Technical Paper

Effects of Gasoline Fuel Properties on Engine Performance

2008-04-14
2008-01-0628
Beijing will implement the national 4th stage emissions standards (equivalent to Euro IV emissions standards) in advance in China from 2008. The objective of this study was to provide some technical support for proposing automotive gasoline fuel standards matching with the emission standards. In this paper, tests were conducted on two engines and one gasoline passenger vehicle meeting Euro III or IV emission standards to study the correlation between gasoline fuel properties and engine performances, including power, fuel consumption and emissions. Test results showed that the effect of octane number on engine power depended on engine technologies. High octane number had a negative effect on fuel consumption and emissions. As olefin content increased, the engine-out THC emissions decreased significantly. The vehicle test results also showed that high olefin content greatly reduced the tailpipe THC emissions.
Technical Paper

Effects of Mixing and Chemical Parameters on Homogeneous Charge Induced Ignition Combustion Based on a Light-Duty Diesel Engine with Ultra-Low NOx and Soot Emissions and High Thermal Efficiency

2013-04-08
2013-01-0914
A Homogeneous charge induced ignition (HCII) combustion, realized by in-cylinder fuel blending of gasoline and diesel fuel, was developed and carefully optimized, both on a single cylinder and a multi-cylinder light-duty diesel engines, for high thermal efficiency and near zero emissions in a wide engine-operation range up to IMEP of 1 MPa. The effects of mixing and chemical parameters of HCII combustion, which can be controlled by production-viable hard-ware using conventional gasoline and diesel fuel, include injection timing of diesel fuel, injection rate pattern of diesel fuel (such as split injection), the gasoline/diesel ratio, boost pressure and exhaust gas recirculation (EGR). Based on a single cylinder engine, the experimental result shows that the interaction of the mentioned control parameters plays decisive role in determination of exhaust emissions and thermal efficiency.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Technical Paper

Experimental Investigation of Improving Homogeneous Charge Induced Ignition (HCII) Combustion at Medium and High Load by Reducing Compression Ratio

2017-03-28
2017-01-0765
This research focuses on the potential of Homogeneous Charge Induced Ignition (HCII) combustion meeting the Euro V emission standard on a heavy-duty multi-cylinder engine using a simple after-treatment system. However, in our previous studies, it was found that the gasoline ratio was limited in HCII by the over-high compression ratio (CR). In this paper, the effects of reducing CR on the performances of HCII at medium and high loads were explored by experimental methods. It was found that by reducing CR from 18:1 to 16:1 the peak in-cylinder pressure and the peak pressure rise rate were effectively reduced and the gasoline ratio range could be obviously extended. Thus, the combustion and emission characteristics of HCII at medium and high loads were noticeably improved. Soot emissions can be significantly reduced because of the increase of premixed combustion ratio. The reduction could be over 50% especially at high load and high speed conditions.
Technical Paper

Experimental Study of Flame Accelerated Ignition on Rapid Compression Machine and Heavy Duty Engine

2017-10-08
2017-01-2242
A new ignition method named Flame Accelerated Ignition (FAI) is proposed in this paper. The FAI system composes of a spark plug and a flame acceleration tunnel with annular obstacles inside. The FAI was experimentally investigated on a rapid compression machine (RCM) with optical accessibility and a single-cylinder heavy duty research engine. In RCM, the flame is significantly accelerated and the combustion process is evidently enhanced by FAI. The ignition delay and the combustion duration are both sharply decreased compared with conventional spark ignition (CSI) case. According to the optical diagnostics, the flame rushes out of the exit of the flame acceleration tunnel at maximum axial speed over 40 m/s, which exceeds 10 times that of CSI flame propagation. In radial direction, the flame curls outwards near the tunnel exit and keeps growing afterwards.
Technical Paper

HCCI Combustion Control by DME-Ethanol Binary Fuel and EGR

2012-09-10
2012-01-1577
The HCCI engine offers the potential of low NOx emissions combined with diesel engine like high efficiency, however HCCI operation is restricted to low engine speeds and torques constrained by narrow noise (HCCI knocking) and misfiring limits. Gasoline like fuel vaporizes and mixes with air, but the mixture may auto-ignite at the same time, leading to heavy HCCI knocking. Retarding the CA50 (the crank angle of the 50% burn) is well known as a method to slow the maximum pressure rise rate and reduce HCCI knocking. The CA50 can be controlled by the fuel composition, for example, di-methyl ether (DME), which is easily synthesized from natural gas, has strong low temperature heat release (LTHR) characteristics and ethanol generates strong LTHR inhibitor effects. The utilization of DME-ethanol binary blended fuels has the potential to broaden the HCCI engine load-speed range.
X